Real Orientations, Real Gromov-Witten Theory, and Real Enumerative Geometry

نویسندگان

  • Penka Georgieva
  • Aleksey Zinger
چکیده

The present note overviews our recent construction of real Gromov-Witten theory in arbitrary genera for many real symplectic manifolds, including the odd-dimensional projective spaces and the renowned quintic threefold, its properties, and its connections with real enumerative geometry. Our construction introduces the principle of orienting the determinant of a differential operator relative to a suitable base operator and a real setting analogue of the (relative) spin structure of open Gromov-Witten theory. Orienting the relative determinant, which in the nowstandard cases is canonically equivalent to orienting the usual determinant, is naturally related to the topology of vector bundles in the relevant category. This principle and its applications allow us to endow the uncompactified moduli spaces of real maps from symmetric surfaces of all topological types with natural orientations and to verify that they extend across the codimension-one boundaries of these spaces, thus implementing a far-reaching proposal from C.-C. Liu’s thesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real Gromov-Witten Theory in All Genera and Real Enumerative Geometry: Properties

The first part of this work constructs positive-genus real Gromov-Witten invariants of realorientable symplectic manifolds of odd “complex” dimensions; the present part focuses on their properties that are essential for actually working with these invariants. We determine the compatibility of the orientations on the moduli spaces of real maps constructed in the first part with the standard node...

متن کامل

Real Gromov-Witten Theory in All Genera and Real Enumerative Geometry: Construction

We construct positive-genus analogues of Welschinger’s invariants for many real symplectic manifolds, including the odd-dimensional projective spaces and the renowned quintic threefold. In some cases, our invariants provide lower bounds for counts of real positive-genus curves in real algebraic varieties. Our approach to the orientability problem is based entirely on the topology of real bundle...

متن کامل

Real Gromov-Witten Theory in All Genera and Real Enumerative Geometry: Computation

The first part of this work constructs positive-genus real Gromov-Witten invariants of realorientable symplectic manifolds of odd “complex” dimensions; the second part studies the orientations on the moduli spaces of real maps used in constructing these invariants. The present paper applies the results of the latter to obtain quantitative and qualitative conclusions about the invariants defined...

متن کامل

Enumerative invariants of stongly semipositive real symplectic six-manifolds

Following the approach of Gromov and Witten [4, 22], we define invariants under deformation of stongly semipositive real symplectic six-manifolds. These invariants provide lower bounds in real enumerative geometry, namely for the number of real rational J-holomorphic curves which realize a given homology class and pass through a given real configuration of points.

متن کامل

Enumerative invariants of stongly semipositive real symplectic manifolds

Following the approach of Gromov and Witten [3, 20], we define invariants under deformation of stongly semipositive real symplectic manifolds provided essentially that their real locus is Pin. These invariants provide lower bounds in real enumerative geometry, namely for the number of real rational J-holomorphic curves which realize a given homology class and pass through a given real configura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015